5-Lipoxygenase and human pulmonary artery endothelial cell proliferation.
نویسندگان
چکیده
Increased 5-lipoxygenase (5LO) expression in pulmonary artery endothelial cells (PAECs) has been observed in primary pulmonary hypertension, a disorder associated with pulmonary vascular remodeling and aberrant endothelial cell proliferation. To examine whether 5LO plays a role in endothelial cell proliferation, we analyzed the effect of 5LO inhibitors on cultured human PAECs. Analysis of [(3)H]thymidine incorporation showed that 5LO and 5LO-activating protein inhibitors AA-861, nordihydroguaiaretic acid (NDGA), and MK-886 all inhibited PAEC growth in a dose-dependent manner, with maximal inhibition of >90% and IC(50) values of 3.9, 1.8, and 0.48 microM, respectively. The effect of AA-861 and NDGA correlated with their effect on 5LO activity in PAECs. Concentrations of these inhibitors at or below their IC(90) values did not cause significant cell death as determined by lactate dehydrogenase release, but decreased cell doubling, as measured by cell counting at 24 h after serum replenishment. Analysis of DNA content suggested that the inhibitors led to an accumulation of PAECs at the G(0)/G(1) phase. Antisense oligonucleotides to 5LO mRNA delivered at a transfection efficiency of approximately 60% inhibited cell growth by 40 +/- 26% compared with that of a sequence-unrelated oligonucleotide. Indomethacin had no effect on PAEC growth over a range of concentrations (0.3-5 microM). These data show that 5LO inhibitors impaired the proliferative response of the cultured PAECs, suggesting that this enzyme may contribute to PAEC growth under certain pathological conditions.
منابع مشابه
Chronic Hypoxia Promotes Pulmonary Artery Endothelial Cell Proliferation through H2O2-Induced 5-Lipoxygenase
Pulmonary Hypertension (PH) is a progressive disorder characterized by endothelial dysfunction and proliferation. Hypoxia induces PH by increasing vascular remodeling. A potential mediator in hypoxia-induced PH development is arachidonate 5-Lipoxygenase (ALOX5). While ALOX5 metabolites have been shown to promote pulmonary vasoconstriction and endothelial cell proliferation, the contribution of ...
متن کاملRole of 12-lipoxygenase in hypoxia-induced rat pulmonary artery smooth muscle cell proliferation.
The 12-lipoxygenase (12-LO) pathway of arachidonic acid metabolism stimulates cell growth and metastasis of various cancer cells and the 12-LO metabolite, 12(S)-hydroxyeicosatetraenoic acid [12(S)-HETE], enhances proliferation of aortic smooth muscle cells (SMCs). However, pulmonary vascular effects of 12-LO have not been previously studied. We sought evidence for a role of 12-LO and 12(S)-HETE...
متن کاملThe Role of 12-Lipoxygenase in Hypoxia-Induced Rat Pulmonary Artery Smooth Muscle Cell Proliferation
The 12-lipoxygenase (12-LO) pathway of arachidonic acid metabolism stimulates cell growth and metastasis of various cancer cells and the 12-LO metabolite, 12(S)-hydroxyeicosatetraenoic acid [12(S)-HETE], enhances proliferation of aortic smooth muscle cells (SMCs). However, pulmonary vascular effects of 12-LO have not been previous ly studied. We sought evidence for a role of 12-LO and 12HETE in...
متن کاملHypoxia does neither stimulate pulmonary artery endothelial cell proliferation in mice and rats with pulmonary hypertension and vascular remodeling nor in human pulmonary artery endothelial cells.
BACKGROUND Hypoxia results in pulmonary hypertension and vascular remodeling due to induction of pulmonary artery cell proliferation. Besides pulmonary artery smooth muscle cells, pulmonary artery endothelial cells (PAECs) are also involved in the development of pulmonary hypertension, but the effect of hypoxia on PAEC proliferation has not been completely understood. METHODS We investigated ...
متن کاملKey role of 15-lipoxygenase/15-hydroxyeicosatetraenoic acid in pulmonary vascular remodeling and vascular angiogenesis associated with hypoxic pulmonary hypertension.
We have found that 15-hydroxyeicosatetraenoic acid (15-HETE) induced by hypoxia was an important mediator in the regulation of hypoxic pulmonary hypertension, including the pulmonary vasoconstriction and remodeling. However, the underlying mechanisms of the remodeling induced by 15-HETE are poorly understood. In this study, we performed immunohistochemistry, pulmonary artery endothelial cells m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 282 2 شماره
صفحات -
تاریخ انتشار 2002